April 2009

MADALGO seminar by Jelani Nelson, Massachusetts Institute of Technology (MIT)

Revisiting Norm Estimation in Data Streams

Abstract:

The problem of estimating the pth moment F_p (*p* nonnegative and real) in data streams is as follows. There is a vector *x* which starts at 0, and many updates of the form $x_i \leftarrow x_i + v$ come sequentially in a stream. The algorithm also receives an error parameter $0 < \varepsilon < 1$. The goal is then to output an approximation with relative error at most ε to $Fp = ||x||_p^p$.

Previously, it was known that polylogarithmic space (in the vector length *n*) was achievable if and only if p <= 2. We make several new contributions in this regime, including:

(*) An optimal space algorithm for $0 , which, unlike previous algorithms which had optimal dependence on <math>1/\varepsilon$ but sub-optimal dependence on n, does not rely on Nisan's PRG.

(*) A near-optimal space algorithm for p = 0 with optimal update and query time.

(*) A near-optimal space algorithm for the "distinct elements" problem (p = 0 and all updates have v = 1) with optimal update and query time.

(*) Improved $L_2 \rightarrow L_2$ dimensionality reduction in a stream.

(*) New 1-pass lower bounds to show optimality and near-optimality of our algorithms, as well as of some previous algorithms (the "AMS sketch" for p = 2, and the L_1 -difference algorithm of Feigenbaum *et al.*).

As corollaries of our work, we also obtain a few separations in the complexity of moment estimation problems: F_0 in 1 pass vs. 2 passes, p = 0 vs. p > 0, and F_0 with strictly positive updates vs. arbitrary updates.

Joint work with:

Daniel Kane, Harvard University David Woodruff, IBM Almaden.